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Abstract
We use the method of Adler–van Moerbeke and Vanhaecke to show that the
general fibre of the Hamiltonian system of Dorizzi, Grammaticos and Ramani
and its deformation completes to a (1, 6)-polarized abelian surface.

Mathematics Subject Classification: 14K20, 14H70, 37J35

1. Polynomial integrable systems

In the symplectic phase space C2n with a canonical system of coordinates (q, p) =
(q1, q2, . . . , qn, p1, p2, . . . , pn), a Hamiltonian function H determines a time evolution via
HAMILTONs equations of motion:

q̇i := ∂H

∂pi

, ṗi = −∂H

∂qi

.

The time evolution of an arbitrary quantity G is then given in terms of the Poisson-bracket:

Ġ = {H, G} :=
n∑

i=1

∂H

∂pi

∂G

∂qi

− ∂H

∂qi

∂G

∂pi

.

In the Nouvelle Méthodes de la mécanique céleste Poincaré [Poi99] gives arguments that for
a generic polynomial Hamiltonian H ∈ C[q, p] of degree �3 no second integral of motion
exists, meaning that all polynomial solutions G of the equation

{H, G} = 0

are polynomials in H . In the case of systems of two degrees of freedom, n = 2, the existence
of a second integral of motion G, independent of H , makes the system integrable in the sense
of Liouville [Lio53]. The polynomials H and G define a moment map:

f : C4 −→ C2, (q, p) �→ (H(p, q), G(p, q))
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whose general fibre Fc := f −1(c) is a smooth affine Lagrangian variety whose tangent space
at each point is spanned by the two commuting Hamiltonian vector fields χH := {H, −} and
χG := {G, −}.

Such polynomial integrable systems are however very rare. For Hamiltonians describing
a particle in a potential

H = 1

2
(p2

1 + p2
2) + V (q1, q2)

the powerful methods of Ziglin [Zig82, Zig83] and generalizations by Morales-Ruiz and
Ramis [MRR01] can be used effectively to prove non-integrability in many cases. It was
shown by Maciejewski and Przybylska [MP04] that there are, up to coordinate transformation
and apart from the case where V depends on one variable, only four integrable cases where
V (q1, q2) is homogeneous of degree three. In fact, these systems have been known for a long
time. Three of the integrable cases are of Hénon–Heiles type:

Hε := 1

2
(p2

1 + p2
2) +

ε

3
q3

1 + q1q
2
2 ,

that is integrable precisely for ε ∈ {1, 6, 16}.
For ε = 1 there is an easy separation of variables and the generic fibre is the product of

the affine part of two elliptic curves.
The geometry of the ε = 6 case was described in detail by Mark Adler and Pierre van

Moerbeke in [AvM88]. It is an example of what became known as an algebraic completely
integrable system: the general fibre can be compactified to an abelian surface A and the
Hamiltonian vector fields extend to holomorphic (and hence ‘linear’) vector fields on A. To
be more precise, the fibre is isomorphic to A \ D where D a smooth hyperelliptic curve of
geometric genus 3 that puts a (1, 2)-polarization on A. The curve D is a 2 : 1 cover of an
elliptic curve E and A is isomorphic to the Prym variety Prym(D/E).

More information and a deeper insight on the topic of algebraic completely integrable
systems can be obtained from the survey of Vanhaecke [Van08] and Lesfari [Les11]. The case
ε = 16 has been partially analysed in [RGC93]. It is not algebraic completely integrable in the
above sense. The general fibre compactifies to a surface B that is a 2 : 1 cover B → A of an
abelian surface A isogenous to the product of two elliptic curves. The cover is ramified along
a curve D of geometric genus 4 which has an A1-singularity that puts a (2, 2)-polarization on
A. The Hamiltonian vector fields are the pull-back of the linear vector fields on A. For more
details we refer to the forthcoming paper [SvS].

The fourth integrable case was discovered thirty years ago by Dorizzi, Grammaticos and
Ramani, [DGR82]. The Hamiltonian is

H := 1

2
(p2

1 + p2
2) + q3

1 +
1

2
q1q

2
2 +

√−3

18
q3

2

and has a second integral:

G := p1p
3
2 −

√−3

2
p4

2 +
1

2
q3

2p2
1 −

(
3

2
q1q

2
2 −

√−3

2
q3

2

)
p1p2

+

(
3q2

1q2 − √−3q1q
2
2 +

1

2
q3

2

)
p2

2 +
1

2
q3

1q3
2 +

√−3

8
q2

1q4
2 +

1

4
q1q

5
2 + 5

√−3

72
q6

2 .

In fact, as pointed out by Hietarinta [Hie83], this system has an integrable deformation
depending on a parameter a, where a term a.q1 is added to the Hamiltonian. As far as we
know, the geometry of this system and its deformation have not been investigated before. The
main result of this paper is to show the following theorem:
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Theorem. The system of Dorizzi–Grammaticos–Ramani is algebraic completely integrable.
Its general fibre is isomorphic to A \ D, where A is an abelian surface and D a curve of
geometric genus 4 having a singularity of type D4. The Hamiltonian vector fields extend to
linear vector fields on A and D puts a (1, 6)–polarization on A. If the deformation parameter
a = 0, then A is isomorphic to the self-product of the elliptic curve with an automorphism of
order 6.

The case a = 0 is part of the PhD Thesis of the first author [Sem12] that offers more
details to the proof.

2. The Adler–van Moerbeke strategy

In [AMV04] Adler et al described a general strategy to analyse the fibres of an integrable
system and used it to analyse examples. We will give a sketch of the main ideas and refer
to [AMV04] and other work of Vanhaecke [Van96] for more details.

The first step goes back to Kovalevskaya [Kov89] and consist of finding Laurent-series

qi(t) = 1

tµi

(
q

(0)
i + q

(1)
i t + · · ·), pi(t) = 1

tνi

(
p

(0)
i + p

(1)
i t + · · ·)

solving the equations of motion

q̇i = {H, qi}, ṗi = {H, pi}.
Substituting these series in the equations of motion we obtain the so-called initial equations
for the coefficients q

(0)
i and p

(0)
i , defining an initial locus � ⊂ C2n. For each point

p = (q
(0)
i , p

(0)
i ) ∈ � the higher coefficients are determined by a system of linear equations(

K(p) − k · Id
) · (q(k), p(k))t = R(k).

Here K(p) denotes the Kovalevskaya-matrix at p and the entries of R(k) are polynomials in the
0th up to (k − 1)th coefficients. Whenever k equals an eigenvalue of the Kovalevskaya-matrix
we can add a linear parameter to the series. The eigenvalues of this matrix are called the
Kovalevskaya exponents.

In this way we end up with Laurent-series solutions parametrized by an affine variety.
A Laurent-series solution parametrized by a (2n − 1)-dimensional variety is called principal
balance. The solutions running inside a generic fibre of the integrable system will then be
parametrized by an (n − 1)-dimensional variety, called the Painlevé divisor D. This is a first
approximation for a compactifying divisor of the generic fibre of the integrable system.

Let us denote the general Laurent-series parametrized by D by

(qD(t), pD(t)).

As a second step, we can consider, for each integer m, the vector space

P(mD) := {f ∈ C[q, p] | Pole order (f (qD(t), pD)) � m}.
If P(mD) has dimension N + 1, we can use a basis {ϕi, i = 0, . . . , N} of this vector space to
define a map

ϕ : C2n −→ PN,

obtained by evaluating all the basis elements at (q, p) ∈ C2n. In this way the fibres Fc gets
mapped into PN and we can take its closure

Ac := ϕ(Fc) ⊂ PN
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In a third step, one tries to show that the Hamiltonian vector fields extend to holomorphic vector
fields on Ac. For this to be the case, it is sufficient to show that for each χH all ’Wronskians’

WH
i,j = {H, ϕi}ϕj − {H, ϕj }ϕi

can be expressed as quadratic expressions in the ϕi . If this is the case, and a transversality
property of the flow with respect to D holds, it follows that Ac is an abelian variety and the
system is algebraic completely integrable.

The beauty of the method is that one starts with a set of wild looking Poisson-commuting
polynomials and, if successful, end up with very precise understanding of their geometry.

3. The DGR-system

We will now follow this method to study the above system of Dorizzi, Grammaticos and
Ramani, which we will refer to as the DGR-system. We start with a preliminary study of the
polynomials H and G.

The
√−3 appearing in the H and G can be eliminated by a simple symplectic

transformation:

(q1, q2, p1, p2) �→
(

q1,
√−3q2, p1,

1√−3
p2

)
.

For better readability we will put:

q := q1, Q := 1√−3
q2, p := p1, P := √−3p2

After this substitution we obtain

H = 1

2

(
p2 − 1

3
P 2

)
+ q3 − 3

2
qQ2 +

1

2
Q3 + aq

G = 1

9

(
p − 1

2
P

)
P 3 − 3

2
Q3p2 − 3

2
qQ2pP − 3

2
Q3pP

+
(
−q2Q − qQ2 +

1

2
Q3

)
P 2

− 3

2
q3Q3 +

9

8
q2Q4 +

9

4
qQ5 − 15

8
Q6

+ a
(
−2

3
(q2 + qQ − 2Q2)Q2 + QpP +

1

3
(q − Q)P 2

)
− 3

2
Q2a2.

where we rescaled G by a factor
√−3 and included the deformation parameter a. It is with

these equations we will now work further.
In the next sections we will analyse in detail the situation where a = 0 and in the last

section we indicate the changes that occur when a �= 0. The main simplification that occurs
for a = 0 is that in that case the system is weighted homogeneous: if we assign weight 2 to
q, Q and weight 3 to p, P we find that H and G are homogeneous of weight 6 and 12:

H(λ2q, λ2Q, λ3p, λ3P) = λ6H(q, Q, p, P )

G(λ2q, λ2Q, λ3p, λ3P) = λ12G(q, Q, p, P )

This has two important consequences for the fibres

Fc := f −1(c), c = (g, h)

of the moment map

f : C4 −→ C2, (q, Q, p, P ) �→ (H(q, Q, p, P ), G(q, Q, p, P ))
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namely

(i) For λ ∈ C∗ the fibres of c = (h, g) and c′ = (λ6h, λ12g) are isomorphic.
(ii) The fibres Fc admit a Z/6-action.

This action of Z/6 will be of great help in this paper and our constructions in the next paragraph
will be equivariant with respect to this action. We will fix a primitive 6th root of unity

ρ = e
2π i
6

and define an automorphism σ by its action on C4:

σ(q) = ρ2q, σ (Q) = ρ2Q, σ(p) = ρ3p, σ(P ) = ρ3P

which induces the Z/6 = 〈σ 〉-action on Fc.

Proposition. Let

� := {(h, g) ∈ C2 | (3h2 + 2g)g = 0} ⊂ C2.

Then:

(i) For c /∈ � the fibre Fc is smooth.
(ii) For c ∈ �, c �= (0, 0) the fibre Fc is singular along a smooth affine cubic with j -invariant

zero, transverse to which Fc has a singularity type D4.
(iii) The fibre F0 is reducible and consists of two components that intersect in a pair of rational

cuspidal curves.

Proof. The singular points of the fibres over (h, g) of the map f are the solutions of the
equations obtained by equating to zero the 2 × 2-minors of the Jacobian matrix of f and the
two equations H − h = 0, G − g = 0. By elimination of the variables q, Q, p, P one obtains
the equation for �. With a little more effort one can obtain the statements (ii) and (iii). We
recall that a plane curve singularity given by an equation f (x, y) = 0 has a D4 singularity at
0, if the the Taylor series of f at O starts with a non-degenerate cubic term (ordinary triple
point.) ♦

Remarks.

(1) As the set of fixed points of σ , σ 2, σ 3 on C4 are given by {q = Q = p = P = 0},
{q = Q = 0}, {p = P = 0} respectively, one finds that for generic c the set of fixed
points of σ, σ 2, σ 3 on Fc consists of 0, 8, 12 points respectively.

(2) In the decomposition of the 0-fibre F0 = C1 ∪ C2 the first component appears in fact with
multiplicity 2 in the primary decomposition. Its reduction is given by the following four
equations

0 = 3Qp + 2qP + QP

0 = 9qQ2 − 9Q3 + 2P 2

0 = 9q2Q − 9Q3 − 3pP + P 2

0 = 6q3 − 6Q3 + 3p2 + P 2.

It is isomorphic to the so-called open Whitney-umbrella, one of the simplest Lagrangian
singularities, [Giv86, vS06]. The general hyperplane section has a cuspidal singularity
(A2) and its normalization is smooth.



2978 M Semmel and D van Straten

(3) In accordance with [GvS10], the DGR-system has a lift to a polynomial quantum integrable
system. In the Weyl-algebra C〈p, P, q, Q〉[h̄] with commutation relations

pq − qp = h̄, PQ − QP = h̄

the operators H and

G − h̄
(

3
2qQp + 9

4Q2p + q2P + 2qQP − 3
4Q2P

)
+ h̄2

(− 5
12q + 5

4Q
)

commute (h̄ = h
2πi

). Here H and G are the exact same polynomials as before, but now
considered as elements in the Weyl-algebra. Making the substitution p = h̄ ∂

∂q
, P = h̄ ∂

∂Q

we obtain commuting differential operators.

4. Laurent series solutions to χH

The first step to analyse the complex geometry of the fibres of the moment map is to compute
all principal balances to the flow of χH .

Proposition. The initial locus consists of the three points

I1 : q = −4, Q = 4, p = 8, P = 24

I2 : q = −18, Q = −24, p = 36, P = −144

I3 : q = −2, Q = 0, p = 4, P = 0,

together with the origin.

Proof. From the weights of the variables we see that we have to make the Ansatz

q = q(0)/t2, Q = Q(0)/t2, p = p(0)/t3, P = P (0)/t3

which leads, dropping the (0) superscripts, to the equations

−3p = −∂qH, −3P = −∂QH, −2q = ∂pH, −2Q = ∂P H

The equations are simple to solve by hand. ♦

Proposition. There is a single principle balance corresponding to the point I3.

q(t) = − 2

t2
− 2γ 2

1 + 4γ 3
1 t − 6γ 4

1 t2 + 2γ1γ2t
3 + γ3t

4 + · · ·

Q(t) = 4γ1

t
− 4γ 2

1 + 4γ 3
1 t − γ2t

2 +
(
8γ 5

1 − γ1γ2
)
t3 − γ 2

1 γ2t
4 + · · ·

p(t) = 4

t3
+ 4γ 3

1 − 12γ 4
1 t + 6γ1γ2t

2 + 4γ3t
3 + · · ·

P(t) = 12γ1

t2
− 12γ 3

1 + 6γ2t − (
72γ 5

1 − 9γ1γ2
)
t2 + 12γ 2

1 γ2t
3 + · · · .

The series are equivariant with respect to the group Z/6 = 〈σ 〉 where we put

σ(t) = ρ5t, σ (γ1) = ργ1, σ (γ2) = ρ4γ2, σ (γ3) = γ3.

Proof. Computing the Kovalevskaya exponents at the three points one finds for I1 the exponents
{6, 7, −1, −2}, for I2 {6, 12, −1, −7} and for I3 we find {1, 4, 6, −1}. So only I3 has three
positive integral exponents and gives a principle balance. It is straightforward to compute the
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corresponding Laurent-series. We have chosen the parameters γ1, γ2, γ3 in such a way to make
the first coefficients of the expansions integral. ♦

Proposition. A plane model for the Painlevé–divisor is given by the equation:

C(g, h) : y3 + 3x4y2 − 9x8y + 5x12 + 9hx2y − 9hx6 − 9

4
g = 0.

It is invariant under the group Z/6 = 〈σ 〉, where σ acts as

σ(x) = ρx, σ (y) = ρ4y.

Proof. Once we have the Laurent-series expansions, it is straightforward to substitute them in
the polynomials H and G. As the flow leaves H and G invariant, the result should not depend
on t . We get the following result.

H = 4(130γ 6
1 − 15γ 2

1 γ2 + 7γ3)

G = 108(−3200γ 12
1 + 1088γ 8

1 γ2 − 224γ 6
1 γ3 − 84γ 4

1 γ 2
2 + 56γ 2

1 γ2γ3 + 3γ 3
2 ).

The Painlevé divisor D is defined by these equations, where we set H and G equal to fixed
values h and g. To get a plane model for D, we eliminate the variable γ3. After the rescaling

x =
√

6γ1, y = 9γ2

we end up with the equation given above. ♦
Let us analyse the smooth model of this plane curve in some more detail. It belongs to

the larger family of curves C = C(α, β, γ, δ, ε, ζ ) with general equation

F := (y + αx4)(y + βx4)(y + γ x4) + δx2y + εx6 + ζ = 0

which is the most general curve with monomials in the convex hull of 1, y3, x12 and which is
invariant under the Z/6-action given by

σ(x) = ρx, σ (y) = ρ4y.

Proposition.

(i) For general choice of coefficients the curve C has genus 10.
(ii) If β = γ and the other coefficients are general, then the curve C has genus 7.

(iii) If β = γ and ε = βδ and
(1) δ2 − 4ζ(α − β) �= 0
(2) α − β �= 0
(3) ζ �= 0
then the curve has genus 4.

(iv) If β = γ , ε = βδ and ζ �= 0, but δ2 − 4ζ(α − β) = 0 or α − β = 0, but not both, then
the genus of C is 1.

(v) If β = γ , ε = βδ and ζ = 0 then the curve C becomes reducible

(y + βx4)
(
(y + αx4)(y + βx4) + δx2

) = 0

The second component is of genus 2 if α − β �= 0 and δ �= 0.

Proof.

(i) The projection (x, y) �→ x exhibits C as a 3 : 1 cover of P1. In order to determine
its genus, we determine the ramification index R of this map and use the theorem of



2980 M Semmel and D van Straten

Riemann-Hurwitz

2 − 2g(C) = χ(C) = 3χ(P1) − R = 6 − R

Ramification occurs for those values of x for which two of the three y-values coalesce,
which is given by the resultant of the equations F and ∂yF . It is a polynomial in x6, with
coefficients depending on α, β, . . . , ζ . The coefficients of x24 is given by

(α − β)2(β − γ )2(γ − α)2.

For general choice of coefficients we have 24 simple ramification points (and no at infinity),
so the genus is follows from

2 − 2g(C) = 6 − 24,

hence g(C) = 10.
(ii) If γ = β, the coefficient of x24 vanishes and the genus will drop. Under the restriction

that γ = β, the coefficient of x18 is given

4(α − β)3(δβ − ε).

For a general choice of the other coefficients we get 18 simple ramification points, and as
2 − 2g(C) = 6 − 18, the genus drops to 7.

(iii) If γ = β and ε = δβ, both coefficients of x24 and x18 vanish, and the resultant reduces to
the following quadratic polynomial in x6

Ax12 + Bx6 + C

where

A = (α − β)2(4ζ(α − β) − δ2), B = 2δ(2δ2 − 9ζ(α − β)), C = 27ζ 2

with discriminant

B2 − 4AC = 16(δ2 − 3ζ(α − β))3.

So for general choice of coefficients we get 12 distinct ramification points and thus from
2 − 2g(C) = 6–12 we find the genus to be 4.

(iv) So if γ = β, ε = δβ and 4ζ(α − β) = δ2, the degree drops to 6 and the genus to 1. The
same happens if α = β. If ζ = 0, the ramification points move to origin, but the curve
becomes reducible. This results in case (v). We note however that if 3ζ(α − β) = δ2 the
12 ramification points come together in pairs, so again the number of ramification points
drop to 6, but each count with multiplicity two, so the genus stays 4. ♦

Looking at the equation of the Painlevé divisor C we can read off

α = 5, β = −1, γ = −1, δ = 9h, ε = −9h, ζ = −9

4
g

so we see it has the two special properties

β = γ, ε = βδ

and thus that the Painlevé divisor has genus 4 for generic h and g. Its ramification over the
x-line is schematically depicted below.

∞ −a5 −a4 −a3 −a2 −a1 −a0 0 a5a4a3a2a1a0 .
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More precisely we have:

Corollary. The smooth model of the Painlevé divisor C = C(g, h)

C(g, h) = (y + 5x4)(y − x4) + 9hx2y − 9hx6 − 9

4
g = 0

has

(i) genus 4, when g �= 0 and 3h2 + 2g �= 0,
(ii) genus 1, when 3h2 + 2g = 0, g �= 0,

(iii) reducible, with component of genus 0 and 2, when g = 0, h �= 0.

(y − x4)((y + 5x4)(y − x4) + 9hx2)) = 0.

(iv) For g = h = 0, the curve C reduces to

(y + 5x4)(y − x4)2 = 0.

Note that the condition 3h2 + 2g = 0 for the curve C(g, h) to become singular is the same
as the condition for the fibre Fc to be singular.

5. Structure of the curve

Because Z/6 acts on the curve C, we can consider the quotient curves obtained by dividing
out a subgroup. The quotient E2 = C/〈σ 2〉 of C by Z/3 can be obtained as follows. The
monomials

s := x3, t := x2y, u := xy2, v := y3

generate the invariants under the subgroup Z/3 = 〈σ 2〉. After multiplying the above equation

(y + αx4)(y + βx4)2 + δx2y + βδx6 + ζ = 0

of C with x6, it can be rewritten in terms of s and t as

(t + αs2)(t + βs2)2 + δs2t + βδs4 + ζ s2.

Introducing

λ := 1

t + βs2
, µ := 1/s

we can eliminate t = 1/λ − βs2, and s = 1/µ. After multiplication by λ3µ2 and some
rearrangements one finds the following simple equation in λ, µ for E2:

µ2 + ζλ3 + δλ2 + (α − β)λ = 0.

The map to the λ-line ramifies over 0, ∞ and the zeros of the quadratic equation

ζλ2 + δλ + (α − β) = 0.

So as long as ζ �= 0, δ2 − 4ζ(α − β) �= 0 and α �= β we have four distinct points and hence
we see that E2 is an elliptic curve. Note that λ is in fact invariant under σ , so that the quotient
C/〈σ 〉 is identified with the λ-line P1.

Furthermore, as x3 = s, we see that we can bring the equation of C in the much simpler
form

ξ 6 + ζλ3 + δλ2 + (α − β)λ = 0

where ξ := 1/x.
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From this form it is manifest that the curve is a sixfold cyclic cover of P1, ramified totally
at the three finite points and in three simple points over ∞. The Riemann-Hurwitz count gives

χ(C) = 6 · χ(P1) − 5 − 5 − 5 − 3.1 = −6,

so that indeed g(C) = 4, as it should be.
It is easy to see from this form that if ζ �= 0 and α − β = 0 or δ2 − ζ(α − β) = 0 the

genus drops to 1, whereas for ζ = 0 and α − β �= 0, δ �= 0 the genus is 2.
Form this form of the equation it is also very easy to read off the action of the group Z/6

on the space H 0(�1
C) of holomorphic differentials. We see from the Newton-diagram that a

basis for this space is given by

ω1 = dλ

ξ 5
, ω2 = λω1, ω3 = ξω1, ω4 = ξ 2ω1.

so that generator σ is seen to act as

σ(ω1) = ρ5ω1, σ (ω2) = ρ5ω2, σ (ω3) = ρ4ω3, σ (ω4) = ρ3ω4.

We see that the form ω4 is invariant under σ 2 and thus descend to the holomorphic differential
form on E2. The form ω3 is invariant under σ 3 and descends to an elliptic curve E3 := C/〈σ 3〉.
As this curve has an automorphism of order 3, it is isomorphic to the unique elliptic curve E

with j = 0. The elliptic curve E2 has a variable modulus, given by

j (E2) = 28 (δ2 − 3(α − β)ζ ))3

(α − β)2(δ2 − 4(α − β)ζ )ζ 2

which in terms of the values h, g is given by

j (E2) = 2733 (2h2 + g)3

g2(3h2 + 2g)
.

6. Embedding in P5

Using the Laurent-series solutions of the flow of χH , it is rather straightforward to compute a
basis for the vector space P(D) that consists of those polynomials in qD(t), pD(t) that have
a pole of order � 1. The result is

Proposition. The dimension of the vector space P(D) is six. The following elements constitute
a basis:

ϕ0 := 1

ϕ1 := Q

ϕ2 := Qp +
2

3
qP +

1

3
QP

ϕ3 := 9

2
qQ2 − 9

2
Q3 + P 2

ϕ4 := q2Q2 − 1

2
qQ3 − 1

2
Q4 − 2

3
QpP − 2

9
qP 2 − 1

9
QP 2

ϕ5 := 3

2
qQ2p + 2q2QP +

1

2
qQ2P − Q3P − 1

3
pP 2 +

1

9
P 3.

From this we obtain an mapping from C4 to P5, given by evaluating the polynomials of the
basis.

ϕ : C4 −→ P5, (q, Q, p, P ) �→ (ϕ0 : ϕ1 : . . . : ϕ5).
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When we denote by z0, z1, z2, z3, z4, z5 the corresponding homogeneous coordinates for P5,
this mapping is seen to be Z/6-equivariant, if we let σ operate as follows:

σ(z0, z1, z2, z3, z4, z5) = (z0, ρ
2z1, ρ

5z2, z3, ρ
2z4, ρ

3z5).

We denote by

X := ϕ(C4) ⊂ P5

the closure of of C4 in the projective space. By restricting the above map to a fibre Fc ⊂ C4

we obtain subvarieties ϕ(Fc) ⊂ P5. The closure of the image is an algebraic variety

Ac := ϕ(Fc) ⊂ P5

The compactifying hyperplane is

H := {z0 = 0} ⊂ P5

and we put

Dc := Ac ∩ H

for the hyperplane section of Ac with H. The map ϕ maps Fc onto Ac \ Dc.
For the geometry of the surface Ac the point

P := {(0 : 0 : 0 : 0 : 0 : 1)},
and the line

L := {z0 = z1 = z3 = z4 = 0}
corresponding to the (−1)-eigenspace of the σ 3 will play a prominent role.

We now list a few facts which follow from a direct calculation using the computer algebra
system Singular.

Facts:

(i) The variety X is a hypersurface defined by a homogeneous polynomial F8 of degree 8,
recorded in part B of the appendix.

(ii) The variety Ac, c /∈ �, is a smooth surface of degree 12 defined by an ideal consisting of
four cubics and six quartics, recorded in part C of the appendix. The Hilbert series is

H(t) = 1 + 3t + 6t2 + 6t3 − 3t4 − 3t5 + 2t6

(1 − t)3

= 1 + 6t + 21t2 + 52t3 + 96t4 + · · ·
(iii) The four cubics cut out the surface, together with the line L and 8 further lines, hence

suffice to determine the surface.
(iv) The four cubics and the polynomial F8 define the surface together with the line L and the

8 points that are cut out from the 8 lines by the plane {z1 = z2 = z4 = 0}.
(v) The line L intersects each surface Ac in the point P and three further points. These four

points are in equianharmonic position, i.e. the j -invariant of the four points is 0. Together
with the 12 points in Fc these form the 16 points of Ac fixed under σ 3. The point P

together with 8 points in Fc make up 9 points of Ac fixed under σ 2.
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7. Algebraic integrability

In an algebraic completely integrable system the fibres Fc appear as affine parts of abelian
varieties to which the Hamiltonian vector fields extend. The standard method to obtain the
extension of χH to Ac is to compute Wronskians

WH
i,j = {H, ϕi}ϕj − {H, ϕj }ϕi.

If it is possible to express these as quadratic polynomials in the ϕi then the vector field χH

extends to the compactification.
Unfortunately, this is not the case in our example: the Wronskians WH

i,j were not expressible
as quadratic polynomials in ϕi’s for

(i, j) = (0, 1), (0, 3), (0, 4), (1, 4), (2, 5), (3, 4), (4, 5)

However, we can also look at the space P(2D) of series with pole order at most two.

Proposition. The vector space P(2D) has dimension 24. As basis ψ0, ψ1, . . . , ψ23 we can
take the 21 products ϕiϕj , (i, j = 0, . . . , 5), together with the elements

ψ21 = q, ψ22 = P, ψ23 = pP +
3

2
Q3 +

3

2
qQ2 − 3q2Q

The Wronskians

WH
i,j and WG

i,j

can all be expressed as quadratic polynomials in ψi with coefficients in the field C(g, h).

Proof. It is obvious that the indicated elements ϕiϕj and q, P belong to P(2D). A little
calculation shows that ψ23 ∈ P(2D) and that these elements are linearly independent, so
dim P(2D) � 24. That we have equality follows from a brute force calculation, but is in fact
not needed for the proof of the main theorem; it follows from the theorem a posteriori. The
calculation of the Wronskians is tedious but straightforward. ♦

Theorem. The DGR-system for a = 0 is algebraic completely integrable. The general fibre
Fc is isomorphic to Ac \ Dc where Ac is an abelian surface and Dc is a curve of geometric
genus 4 with a D4 singularity that induces a polarization of type (1, 6) on Ac. The abelian
surface Ac is isomorphic to E × E, where E is the elliptic curve with an automorphism of
order 6.

Proof. The elements ψ0, ψ1, . . . , ψ20 define a map

ϕ(2) : C4 −→ P20

which in fact is the composition of ϕ : C4 −→ P5 followed by the 2-uple embedding
P5 −→ P20. Hence, for generic c the variety

Zc := ϕ(2)(Fc)

is a smooth surface, abstractly isomorphic to Ac. On the other hand, adding the three elements
ψ21, ψ22, ψ23 we obtain a map

ψ : C4 −→ P23, (q, Q, p, P ) �→ (ψ0 : . . . : ψ23).

The computation of the Wronskians shows that the Hamiltonian vector fields extend to the
closure of the image

Bc := ψ(Fc).
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We denote by � := V(χH ∧χG) ⊂ Bc the locus where the vector fields become dependent. As
χH and χG are linearly independent on Fc, it follows that � is contained in the compactification
divisor Bc\ψ(Fc). Using Singular one can verify that for a general fibre (we took c = (1, 1))
χH is transversal to a general point of this divisor. This shows that the codimension of � is at
least two, but as it is a divisor, it follows that � = ∅. From the theorem in the part A of the
appendix, it now follows that that Bc is a compact abelian group and as it is projective, it is an
abelian surface. As Bc projects bijectively to the smooth surface Zc ⊂ P20, it follows that it is
an isomorphism. Hence we conclude that also Ac is an abelian surface, and the vector fields
χH and χG extend to it. So the DGR-system is algebraic completely integrable.

From the equations of Ac one can see that the projective tangent space of Ac at P is given
by z0 = z2 = z3 = 0. Hence we can use ξ := z1/z5, η := z4/z5 as affine coordinates on
the affine tangent space TP A at P . From the action on P5 we see that σ acts on TP Ac by
ξ �→ ρ5ξ, η �→ ρ5η. It now follows from proposition 13.3.5 in [BL04] that Ac � E × E,
where E is the elliptic curve with automorphism of order 6.

The divisor Dc = Ac ∩ H has geometric genus 4 and it follows by a direct calculation
that P = (0 : 0 : 0 : 0 : 0 : 1) is its unique singular point. When we project Dc near P in
the tangent plane TpAc, it follows from the Z/6-symmetry that the Taylor expansion of the
equation of Dc has the form

0 = f3(ξ, η) + f6(ξ, η) + · · · ,
where fk denotes a homogeneous form of degree k. An explicit calculation shows that for
generic c the form f3 is non-zero and has three distinct linear factors. Hence, Dc has an
ordinary triple point as singularity (type D4). As the geometric genus of Dc is four and the
δ-invariant of the D4-singularity is 3, the arithmetic genus of Dc is 4 + 3 = 7. The space
P(D) is identified with H 0(Ac, OAc

(Dc)). In general, if D ⊂ A induces a polarization of type
(δ1, δ2) on an abelian surface A one has:

h0(A, OA(D)) = δ1δ2

and as δ1|δ2 and dim H 0(Ac, OAc
(Dc)) = 6 we obtain (δ1, δ2) = (1, 6). The arithmetic genus

of Dc is

δ1δ2 + 1 = 7

as it should be. ♦

Remarks.

(1) Remember the curve C = C(g, h) had two different elliptic curves E2 and E3 as quotients.
The abelian surface Ac can also be seen as the (connected component of) the kernel of the
map

Jac(C) −→ Jac(E2) × Jac(E3)

which has ω1 and ω2 representing the tangent space at zero. Both have eigenvalue ρ5

under the action of σ , in accordance with the above calculation.
(2) The fact that Ac = E × E was forced on us by the 6-fold cyclic symmetry, which might

come as a disappointment from the point of view of abelian varieties. On the other hand,
it implies that the solutions of the DGR-system can be given in terms of θ -functions of
one variable belonging to the elliptic curve E. It would be interesting to find an explicit
form of this splitting, which is not compatible with the polarization. This seems to be the
first example of this phenomenon. Furthermore, the system has a deformation parameter
a that removes the Z/6-symmetry.
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(3) It is a theorem of Ramanan [Ram84] that a (1, 6)-polarization on a general abelian surface
is very ample, and thus produces an embedding A −→ P5. Apparently our very special
surface is general enough.
From our proof it follows that one has an identification

P(2D) = H 0(OAc
(2Dc)),

from which it follows that

dim P(2D) = 2.12 = 24.

We note that this embedding is not quadratically normal, as the space P(2D) is larger
than the image of

P(D) × P(D) −→ P(2D).

This is related to the fact that we could not express all Wronskians as quadratic expressions
in the ϕi’s. In the paper by Gross and Popescu [GP01] one finds an analysis of (1, 6)-
polarized varieties from the point of view of the Heisenberg-group and θ -functions. The
four cubics in the ideal appear as determinants of certain with entries that are linear forms
in the variables.

(4) In order to transform our equations in a form for which the action of the Heisenberg-group
is manifest, one would have to bring the position of the 8 lines in standard form. The
projection of these lines on the z0, z1, z4 coordinate plane is given by the equation

4g2z4
1 + 16ghz3

1z4 − 12gz2
1z

2
4 − 3z4

4 = 0

which factors only over the field Q(g, h, η) obtained from Q(g, h) the adjoining a root η of
the above quartic equation. As the Galois-group of this equation is S4, the transformation
is necessarily described by rather formidable expressions. This makes it also plausible
that an explicit description of the splitting Ac = E × E will involve this field extension.

(5) There are some remarkable curves lying on the fibres Fc. For example, the intersection
with Q = 0 is the curve

1

2
p2 − 1

6
P 2 + q3 = h,

(
1

9
p − 1

18
P

)
P 3 = g,

a smooth curve of genus 7. This curve in fact belongs to the linear system | Dc | as
Q = ϕ1, so appears as a linear section of Ac ⊂ P5. Using the basis for P(D) one can
write down the general member of the linear system as a curve in C4, lying on Fc.

(6) It is remarkable fact that the singularity D4 appears twice in the geometry of this integrable
system: first as transverse singularity type of the fibre Fc for c ∈ � \ {0}, and second as
the singularity of the compactifying divisor. Is there deeper reason for this? Of course,
both are the simplest compatible with the Z/6-symmetry.

8. The case a �= 0

It turns out that the inclusion of the deformation parameter a produce only slightly more
complicated formulas and the main conclusions remain valid. The main effect is that we lose
the weighted homogeneity and the Z/6 group action, but the fibres still complete to an (1, 6)

polarized abelian surface. For sake of completeness we record the relevant changes that occur,
but will not mention the details of the calculations, as they are completely analoguous to the
case a = 0.
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Discriminant. As H and G now involve an extra parameter and we denote the fibre of
the momentum-map as before by Fc, where now c = (a, g, h). The discriminant � of the
momentum-map will involve the parameter a and defines a surface in the space with coordinates
g, h, a. A calculation shows the equation for � is given by

(4a3 + 27h2 + 18g)(2a3 + 9g)(3h2 + 2g)g = 0.

We see that for a = 0 the polynomial reduces to (9(3h2 + 2g)g)2, which defines the curve that
we had before. Note however that for a �= 0 both branches split into two.

Laurent-series. We can calculate as before the parametric Laurent-series solutions. Again,
there is a single principle balance, given by the series:

q(t) := −2

t2
− 2γ 2

1 + 4γ 3
1 t −

(
6γ 4

1 − 1

10
a

)
t2 + 2γ1γ2t

3 + γ3t
4 + · · ·

Q(t) := 4γ1

t
− 4γ 2

1 + 4γ 3
1 t − γ2t

2 +

(
8γ 5

1 − 1

10
γ1a − γ1γ2

)
t3 − γ 2

1 γ2t
4 + · · ·

p(t) := 4

t3
+ 4γ 3

1 −
(

12γ 4
1 − 1

5
a

)
t + 6γ1γ2t

2 + 4γ3t
3 + · · ·

P(t) := 12γ1

t2
− 12γ 3

1 + 6γ2t +

(
− 72γ 5

1 +
9

10
γ1a + 9γ1γ2

)
t2 + 12γ 2

1 γ2t
3 + · · · .

Painlevé curve. By substitution of these series in H and G and equating them to h resp. g

we obtain

h = 4(130γ 6
1 − 15γ 2

1 γ2 + 7γ3 − 2aγ 2
1 )

g = 108
(−3200γ 12

1 + 1088γ 8
1 γ2 − 224γ 6

1 γ3 − 84γ 4
1 γ 2

2 + 56γ 2
1 γ2γ3 + 3γ 3

2

)
+ 6a

(
1472γ 8

1 − 192γ 4
1 γ2 + 56γ 2

1 γ3 − 9γ 2
2

) − 72γ 4
1 a2 .

As before, we eliminate γ3 and set

x :=
√

6γ1 y := 9γ2.

A plane model of the Painlevé divisor now appears as a plane curve C(g, h, a) with equation

C(h, g, a) : y3 + 3y2x4 − 3

2
ay2 − 9yx8 + 9ayx4 + 9hyx2 + 5x12

− 15

2
ax8 − 9hx6 +

3

2
a2x4 +

9

2
hax2 − 9

4
g = 0.

Ramification. The projection of C(h, g, a) on the x–axes is ramified along the square roots
of the zeros z of the equation:

0 = (256a3 + 576(3h2 + 2g))z6 + (864a2h)z5

− (276a4 + 1728a(h2 + g))z4 − (1152a3h + 1728h3 + 1296hg)z3

+ (12a5 − 864a2h2 + 540a2g)z2 + (36a4h + 648ahg)z

− (18a3g + 81g2).

From this we see that, for general choice of the parameters g, h, a, this curve has genus four.
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Elliptic quotient. The curve C(a, h, g) no longer has a Z/6-action, but is still invariant under
the Z/2–action defined by:

τ : (y, x) �→ (y, −x).

As parameters for the quotient curve E(a, h, g) = C(a, h, g)/〈τ 〉 we take

t := y − x4, s := x2.

and obtain for it a plane model given by the equation

0 = 24t2s2 + 4t3 + 24ats2 − 6at2 + 36hts + 6a2s2 + 18ahs − 9g

The elliptic curve E has a variable modulus, its j -invariant is given by:

j (E) = − 768a6

12a3h2 + 8a3g + 81h4 + 108h2g + 36g2
.

Basis for P(D). As before, the space P(D) has dimension six. A basis is given by:

ϕ0 := 1

ϕ1 := Q

ϕ2 := Qp +
2

3
qP +

1

3
QP

ϕ3 := 9

2
qQ2 − 9

2
Q3 + P 2

ϕ4 := q2Q2 − 1

2
qQ3 − 1

2
Q4 − 2

3
QpP − 2

9
qP 2 − 1

9
QP 2 + Q2a

ϕ5 := 3

2
qQ2p + 2q2QP +

1

2
qQ2P − Q3P − 1

3
pP 2 +

1

9
P 3 + QPa.

Embedding in P5. The polynomials ϕ0, ϕ1, . . . , ϕ4 map C2 and the fibre Fc to P5 and we put
as before

X := ϕ(C4), Ac := ϕ(Fc)

X is a hypersurface of degree 8 defined a polynomial F8 of degree 8, containing a as a parameter,
that we recorded in part B of the appendix. The variety Ac for c /∈ � is a smooth surface of
degree 12, cut out by four cubics and six quartics, recorded in part C of the appendix. The
cubics define the surface Ac together with L and eight further lines, which in fact do not depend
on the parameter a. The line L intersects the surface in the point P and three further points.
The j -invariant of these four points is found to be

j = − 192a6

(2a3 + 9g)g
.

So only for a = 0 this reduces j = 0. The vector space P(2D) for a �= 0 turns out to be
spanned by the products of elements of P(D) and the same three extra elements ψ21, ψ22, ψ23

as for a = 0.

Theorem. The DGR-system is also algebraic completely integrable for a �= 0. The general
fibre Fc is isomorphic to Ac \Dc where Ac is an abelian surface and Dc is a curve of geometric
genus 4 with a D4 singularity that induces a polarization of type (1, 6) on Ac.

The proof runs along exactly the same lines as for a = 0. The most notable difference
with the case a = 0 is the absence of the cyclic group action by Z/6, which in that case leads
to the isomorphism of the abelian surface Ac with E × E where E is the elliptic curve with
j = 0. For a �= 0 there seems to be no reason to expect the surface Ac to split.
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Appendix

(A) The following theorem is a variation of theorem 6.22 in [AMV04].

Theorem. Let X be a compact reduced and irreducible n–dimensional analytic space
and let

V1, . . . , Vn ∈ H 0(X, �X)

global commuting vector fields. Denote by

� := V(V1 ∧ . . . ∧ Vn)

the vanishing locus of the section V1 ∧ . . . ∧ Vn ∈ H 0(X, ∧n�X) of the rank one sheaf
∧n�X. If � �= X, then X \ � is isomorphic to a complex abelian Lie-group. If X is
smooth the set � is of pure codimension 1 in X or empty.

Proof. As X is compact, all global vector fields are complete and so the flow of the vector
fields Vi is defined for all time:

�Vi
: X × C → X, (x, t) �→ �t

Vi
(x).

Next we want to show that the vector fields Vi remain complete after restriction to X \ �.
This is equivalent to the statement that � is invariant under the flow of all Vi . Obviously,
the singular locus of X is invariant under the flow of any vector field. As the dimension of
the singular locus � is at most n − 1, there are no n independent vector fields leaving �

invariant, so � is contained in �. The set � ∩Xreg is invariant under the flow of all the Vi

if and only if the Lie–derivation of V1 ∧ . . . ∧ Vn by all Vi’s vanishes. But as [Vi, Vj ] = 0
we have:

LVj
(V1 ∧ . . . ∧ Vn) =

n∑
i=1

V1 ∧ . . . ∧ [Vj , Vi] ∧ . . . ∧ Vn = 0.

The rest of the proof is a completely analogues to argument used in [AMV04],
theorem 6.22. We pick an arbitrary point p ∈ X \ � and define the map:

� : Cn → X \ �, (t1, . . . , tn) �→ �
t1
V1

◦ . . . ◦ �
tn
Vn

(p)

and denote � := ker(�) which is a finitely generated free Z–module. The map � induces
an isomorphism Cn/� � X\� and Cn/� is a complex abelian group. That � is a divisor
follows from the fact that if X is smooth, then ∧n�X is a rank one bundle. ♦
We remark that every connected complex abelian Lie–group G is given as a group extension
of a complex torus A by a linear group L � Cr × (C∗)s for some integers r and s:

e → L → G → A → e.
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(B) The equation for the hypersurface X ⊂ P5 is F8 = 0, where F8 is the polynomial:

F8 := (−81a)z6
1z

2
3 + 162z0z

3
1z

2
2z

2
3 − 27z5

1z
3
3 + 36z3

0z
2
2z

3
3 − 4z2

0z
2
1z

4
3

− 6561z5
1z

2
2z4 + (−1458a)z0z

5
1z3z4 − 1458z2

0z
2
1z

2
2z3z4

− 405z0z
4
1z

2
3z4 − 72z3

0z1z
3
3z4 + (−6561a)z2

0z
4
1z

2
4 − 729z2

0z
3
1z3z

2
4

− 324z4
0z

2
3z

2
4 + 6561z3

0z
2
1z

3
4 − 486z0z

4
1z2z3z5 − 216z3

0z1z2z
2
3z5

+ 4374z2
0z

3
1z2z4z5 + 324z3

0z
2
1z3z

2
5.

(C) Equations for the abelian surface Ac ⊂ P5, c = (a, g, h) are:
The four cubic equations:

0 = (486g)z0z
2
2 + (216ag)z2

0z3 − (324h2 + 162g)z2
1z3 − (162h)z2

2z3

− (72ah)z0z
2
3 − (4a)z3

3 + (972g)z0z1z4 + (1458h)z0z
2
4 + 81z3z

2
4

+ (972h)z1z2z5 − 486z2z4z5 + (324a)z0z
2
5

0 = (486g)z3
1 + (216g)z2

0z3 + (−72h)z0z
2
3 − 4z3

3 + (1458h)z2
1z4

− 729z2
2z4 − 729z1z

2
4 + 324z0z

2
5

0 = (972hg)z0z
2
1 + (−486g)z0z

2
2 + (−216ag)z2

0z3 + (162g)z2
1z3

+ (72ah)z0z
2
3 + (4a)z3

3 + (−972g)z0z1z4 + (324h)z1z3z4

− 81z3z
2
4 + 486z2z4z5 + (−324a)z0z

2
5

0 = (144g2)z3
0 + (162g)z1z

2
2 + (−48hg)z2

0z3 + (48ag)z0z1z3

+ (16h2 + 8g)z0z
2
3 + (−8ah)z1z

2
3 + (216ag)z2

0z4

− (324h2 + 162g)z2
1z4 + (162h)z2

2z4 + (4a)z2
3z4 + (162h)z1z

2
4

− 81z3
4 + (24a)z2z3z5 + (−72h)z0z

2
5 + (−36a)z1z

2
5 − 12z3z

2
5.

The quartic equations:

0 = (486hg)z1z
2
2z4 + (432h2g + 144g2)z2

0z3z4 + (216ahg)z0z1z3z4

− (144h3 + 48hg)z0z
2
3z4 − (72ah2 + 24ag)z1z

2
3z4

− (16h2 + 8g)z3
3z4 + (2916h3 + 2430hg)z2

1z
2
4

− (1458h2 + 972g)z2
2z

2
4 − (216ag)z0z3z

2
4 + (36ah)z2

3z
2
4

− (1458h2 + 1944g)z1z
3
4 − (729h)z4

4 − (216g2)z2
0z2z5

+ (144hg)z0z2z3z5 + (36ag)z1z2z3z5 + (12g)z2z
2
3z5

− (324ag)z0z2z4z5 + (216ah)z2z3z4z5 − (432hg)z0z1z
2
5

− (216ag)z2
1z

2
5 − (72g)z1z3z

2
5 + (648h2 + 648g)z0z4z

2
5

− (324ah)z1z4z
2
5 − (108h)z3z4z

2
5

0 = (36g)z2
0z2z3 + (−24h)z0z2z

2
3 + (−6a)z1z2z

2
3 − 2z2z

3
3 + (486h)z2

1z2z4

− 243z3
2z4 + (−54a)z0z2z3z4 − 486z1z2z

2
4 + (108g)z2

0z1z5

+ (18a)z2
1z3z5 + 6z1z

2
3z5 + (162a)z0z1z4z5 + 36z0z3z4z5 + 108z0z2z

2
5

0 = (1944ag2)z2
0z1z3 + (1944a2hg)z0z

2
1z3 + (−8748h2g − 4374g2)z3

1z3

− (972a2g)z0z
2
2z3 + (8748hg)z1z

2
2z3 + (−432a3g − 1944g2)z2

0z
2
3

+ (2592ahg)z0z1z
2
3 + (144a3h + 1296h3 + 1512hg)z0z

3
3

− (648ah2 + 108ag)z1z
3
3 + (8a3 + 36g)z4

3 + (−17496ag2)z3
0z4

− (78732h2g − 13122g2)z0z
2
1z4 + (39366hg)z0z

2
2z4

− (26244ag)z1z
2
2z4 + (17496ahg)z2

0z3z4 − (7776a2g)z0z1z3z4
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− (26244h3 + 21870hg)z2
1z3z4 + (13122h2 + 4374g)z2

2z3z4

− (324ag)z0z
2
3z4 + (648a2h)z1z

2
3z4 + (324ah)z3

3z4 + (−26244a2g)z2
0z

2
4

+ (78732hg)z0z1z
2
4 + (13122h2 + 10935g)z1z3z

2
4 + (−162a2)z2

3z
2
4

+ (19683g)z0z
3
4 − (6561h)z3z

3
4 + (26244hg)z2

1z2z5 + (1944ag)z0z2z3z5

+ (1944ah)z2z
2
3z5 + (13122g)z1z2z4z5 + (972a2)z2z3z4z5

− (17496hg)z2
0z

2
5 + (−648a3 − 5832h2 − 2916g)z0z3z

2
5

− (2916ah)z1z3z
2
5 + (−972h)z2

3z
2
5

0 = (243g)z4
2 + (216h2g + 144g2)z2

0z1z3 + (108ahg)z0z
2
1z3

+ (108ag)z0z
2
2z3 − (24hg)z0z1z

2
3 + (−18ah)z2

2z
2
3 + (4h2)z1z

3
3

− (1296g2)z3
0z4 − (972hg)z3

1z4 + (−972g)z1z
2
2z4 + (−216hg)z2

0z3z4

+ (324ah2 − 216ag)z0z1z3z4 + (144h2)z0z
2
3z4 + (36ah)z1z

2
3z4

+ (8h)z3
3z4 + (−1944ag)z2

0z
2
4 + (−1458h2 + 972g)z2

1z
2
4

+ (1458h)z2
2z

2
4 + (162ah)z0z3z

2
4 + (1458h)z1z

3
4 + (−324hg)z2

0z2z5

+ (72g)z0z2z3z5 + (−54ah)z1z2z3z5 + (−6h)z2z
2
3z5

− (486ah)z0z2z4z5 + (−108g)z0z1z
2
5 + (162a)z2

2z
2
5 + (36h)z1z3z

2
5

− (324h)z0z4z
2
5 + (162a)z1z4z

2
5 + 18z3z4z

2
5 − 108z2z

3
5

0 = (162g)z1z
3
2 + (48hg)z2

0z2z3 + (72ag)z0z1z2z3 + (16h2 + 16g)z0z2z
2
3

− (8ah)z1z2z
2
3 + (−324h2 + 162g)z2

1z2z4 + (162h)z3
2z4

+ (144ah)z0z2z3z4 + (12a)z2z
2
3z4 + (810h)z1z2z

2
4 − 243z2z

3
4

− (288hg)z2
0z1z5 + (−144ag)z0z

2
1z5 + (−48g)z0z1z3z5 + (24a)z2

2z3z5

+ (216g)z2
0z4z5 + (−432ah)z0z1z4z5 + (−96h)z0z3z4z5

− (12a)z1z3z4z5 − 4z2
3z4z5 + (108a)z0z

2
4z5 + (−72h)z0z2z

2
5

− (36a)z1z2z
2
5 − 12z2z3z

2
5

0 = (1458hg)z2
1z

2
2 + (−972g)z4

2 + (−432h2g − 576g2)z2
0z1z3

+ (216ahg)z0z
2
1z3 + (−432ag)z0z

2
2z3 + (144h3 + 240hg)z0z1z

2
3

− (72ah2)z2
1z

2
3 + (72ah)z2

2z
2
3 + (−16h2)z1z

3
3 + (5184g2)z3

0z4

+ (−2916h3 + 2430hg)z3
1z4 + (1458h2 + 3888g)z1z

2
2z4

− (216hg)z2
0z3z4 + (864ag)z0z1z3z4 + (−288h2)z0z

2
3z4

− (72ah)z1z
2
3z4 + (−20h)z3

3z4 + (7776ag)z2
0z

2
4

+ (7290h2 − 3888g)z2
1z

2
4 + (−2916h)z2

2z
2
4 + (−972ah)z0z3z

2
4

− (6561h)z1z
3
4 + (−288g)z0z2z3z5 + (432ah)z1z2z3z5 + (24h)z2z

2
3z5

+ (−648h2 + 432g)z0z1z
2
5 + (−324ah)z2

1z
2
5 + (−648a)z2

2z
2
5

− (252h)z1z3z
2
5 + (1296h)z0z4z

2
5 + (−648a)z1z4z

2
5 − 72z3z4z

2
5

+ 432z2z
3
5.
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